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Abstract 

We present the properties of a two-component spinor field that obeys a third-order equa- 
tion. It is separated into a massive part that corresponds closely to a Dirac field, and a 
massless part that obeys the Weyl equation. We discuss the interaction of such a field 
with an external electromagnetic field and the (weak) interactions of two such fields. 
They can be considered both in terms of relativistic quantum mechanics and quantum 
field theory. We conclude that this formulation has some attractive features, such as a 
unified treatment of electrons and muons with their neutrinos, a special role of the 
~(~ transformation, a more convergent propagator and a new approach to interactions. 
It also has some serious difficulties, aside from those generally associated with higher- 
order equations. These are mainly related to inconsistencies in the simultaneous consider- 
ations of electromagnetic and weak interactions. The approach also suggests a further 
unification of the electron and muon fields into a single bispinor field. 

1. Introduction 

The new insight into the nature o f  weak interactions be Lee & Yang  
(1957) led to changes in the theory o f  the four-fermion interaction 
(Sudarshan & Marshak,  1958; Feynman  & Gell-Mann,  1958). In  particular, 
Feynman  advocated the use of  two-componen t  spinors not  only for the 
massless neutrino, but  also for  massive charged particles such as the elec- 
tron. This generated a considerable amoun t  o f  interest in the theory o f  these 
spinors (Brown, 1958; Kibble & Polkinghorne,  1958; G. Marx,  1958; 
Tonin,  1954; Theis, 1959; Barut  & Mullen, 1962a), but  the results were 
inconclusive and the usual formulat ion o f  the Dirac equat ion in terms of  
bispinors retained its preferential place in the literature. 

One difficulty associated with the theory o f  two-componen t  spinors 
is the lack o f  a Lagrangian densi ty ,  that  leads to a second-order  wave 
equation. At tempts  along these lines have led to  the third-order  equat ion 

:~ A possible formulation for a quantized field is discussed by Case (1957). 
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(Kibble & Polkinghorne, 1958; Barut & Mullen 1962a) we discuss here. 
Another possibility that was explored (Marx, 1970a) was an observer- 
dependent Lagrangian density which allows a quantization by means of 
commutators, but does not describe the usual electrons. 

We have two main reasons to come back to the third-order equation. 
One is the experimental verification of the existence of two kinds of neu- 
trinos,~ which makes the association of a massless particle to each charged 
lepton more attractive. The other is an increase in flexibility brought to the 
theory by developments in relativistic quantum mechanics (Marx, 1969, 
1970a, b, c), since the quantization of the field presents difficulties such as 
those related to indefinite metrics in the space of state vectors. 

In Section 2 we recast some results obtained from the Dirac equation 
in terms of two-component spinors. They are equivalent to a considerable 
extent, but some differences are apparent in relation to improper and anti- 
chronous Lorentz transformations presented in Section 3. We then derive 
the third-order equation via the Lagrangian density and find the corres- 
ponding conserved quantities in Section 4. For the free field, they can be 
separated into parts coming from the massive and massless fields. Section 
5 contains a discussion of the interaction with a given electromagnetic 
field, introduced by means of the usual gauge-invariant substitution. This 
approach for a single field implies that the massless field also interacts with 
the electromagnetic one, which would present difficulties in its identification 
with a neutrino. Weak interactions are introduced through vector currents 
formed from an electron field and a muon field, which have the correspond- 
ing neutrinos already incorporated into them; we do this in Section 6, 
and point out some differences with the usual four-fermion coupling due to 
additional terms in these currents. In Section 7 we discuss in general terms 
the interpretation of these classical fields in relativistic quantum mechanics, 
and in Section 8 we do so for a theory of quantized fields. We conclude in 
Section 9 with a summary of the results and some indications for further 
research. 

We use real four-vectors and the time-favouring metric in Minkowski 
space. Our units are such that 

h =  1, c =  I, (1.1) 

four-vectors and tensors have Greek indices that range from 0 to 3, and we 
use the modified summation convention for repeated lower Greek indices, 
that is, 

a u b ~ ,  - a o b o  - a-b (1.2) 

Spinors carry capital Roman indices, which are dotted when the spinor 
transforms with the complex conjugate of the unimodular transformation 
that corresponds to a given Loretnz transformation (Corson, 1953; 
Rzewuski, 1964; Aharoni, 1965). There are some discrepancies in the de- 
finitions of the raising and lowering of indices; our choice is explained 

See Frazer (1960, where references to the original literature are given. 
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I 1 AB • " in Marx (I970a). The quant't 'es tr. are mvanant  under combined transfor- 
mation for the vector and spinor indices, and they are represented by the 
unit 2 x 2 matrix and the three Pauli matrices. A bispinor can be related to 
two spinors through the relation 

(1.3) ¢,(x) = \ z*,(x)/ 

where the indices specify the unimodular transformation that corresponds 
to a Lorentz transformation. The Dirac matrices are given by 

that is, 

We note that 

0 - n~ (1.4) 

(1.6) 

and we associate a second-rank spinor 

aXB XB (1.7) art o-/~ 

to the four-vector a,. Furthermore, we simplify considerably the notation 
by suppressing the spinor indices where they can be restored without diffi- 
culty; this does not result in the use of a matrix notation, since the indices 
should be restored in their natural positions on the different quantities and 
alternate as lower and upper indices, For  instance, 

* a ~ * _ x B  e D  ( 1 . 8 )  

Since 
•A ~PA = -- XA ~pA (1.9) 

the position of the index on ~o is not important as long as we have even num- 
ber of indices, but we have to know whether it is an undotted or dotted index. 
A frequently used identity is 

au a~ + a~ a .  = 2guy (I. 10) 
which stands for 

~a CB _ a ,x  8 c% + o'~x B a~, - 2g~ 6x (1.11) 
o r  

xc xc 2g~ 6 c (1.12) O'uA BG v "Jr'O'vA BG u -~-- 

depending on the context. Other definitions and identities are given through- 
out the text. 

2. The Dirac Field 

Using the relationships (1.3) and (1.4), the Dirac equation 

(-iv" 0 + m) ~9(x) = 0 (2.1) 
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becomes the system of coupled equations 

iO AB q~B(x) = - mza(x) (2.2) 

iO a . Z A ( x )  = - m q ~ . ( x )  (2.3) 

One possible approach to the use of two-component spinors retains both 
the fields (p and Z (Brown, 1958; Tonin, 1959); in this manner we are only 
dealing with a change in notation. Alternatively we can eliminate one of 
the fields and use only the remaining one. If  we substitute Z from equation 
(2.2) into (2.3), we obtain the Klein-Gordon equation 

(0, .  0 ac + m z 3 c) Cpc(X ) = 0 (2.4) 

This second-order equation is equivalent to the two first-order equations 
(2.2) and (2.3) in the sense that there is a one-to-one correspondence between 
the solutions. We can use equation (1.12) to rewrite this equation in the 
form 

(02 + m z) 9c(X) = 0 (2,5) 

Although the equations are the same, they lead to different interactions with 
the electromagnetic field by means of the gauge-invariant substitutiont~ 

0.->Dt, = 0. - ie A~. (2.6) 

We can further substitute these fields in the conserved densities for the 
bispinor field. Thus, the current density 

j(1) = ~74 $ (2.7) 
becomes 

j(u 1) = q~*0"t, 9 + q~t~a~O'nO'o gO aim 2 (2.8) 

the stress-energy tensor 

T(') = ½i (5 74 ~,v - 5 . .  Yu 4) (2,9) / iv 

gives 
T ( 1 )  _ &il f ,~*  a * * 

u ~  - 2o~v" • ~o,v - go,~ a~, go + go,~ a~ c G a a ~o a~/m 2 

- -  9",~ a ,  a 4 a a g o j m  z) (2.10) 

and the angular momentum density 

M(1) _ ~ T(1) _ X. T m + ¼ff(Tu a~p + av4 7~) ~ (2. t 1) 
where 

0% = ½i(7, 7, - 7, 7,) (2.12) 
is transformed into 

M(1) = x r(*) -- x.  T (1) + ¼i[go*(O" 4 O" v 0" 4 - -  O" o a v at, ) gO IzvO v ~ p  ~ , a V  

+ ~*~ G~(a, a~ ~4 - a~ a~ ~,) a~ e.~/m z] (2.13) 
The expression (2.t0) for T~ contains second-order time derivatives; 

This distinction is involved in a comment  ((3. Marx, 1958) that  the Feynman equation 
seems to violate the 'principle of  min imum electromagnetic interaction' .  
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they can be eliminated by using the equation of motion to show that 

cp,~ = (0~ 0 B -- g~  8 2) q9 -- mZ g ~  ~o (2.14) 

(It has an expression free of Oo z on the right-hand side.) 
Alternatively, we can eliminate ~o to obtain the equation of motion 

(O I~A O•A "~ m 2 c]~) Z0(x)  = 0 (2.15) 

and the conserved densities have the same form as those in equations 
(2.8), (2.10) and (2.13); they differ only by the position and type of the spinor 
indices, 

3. Lorentz  Transformations 

Under a Lorentz transformation, vectors transform according to 

x'~ = a /  x,, (3.1) 

where (a, *) is a real pseudo-orthogonal matrix that satisfies 

auZ avO g ~  = gZO (3.2) 

while spinors undergo a linear transformation 

~0~= SA B q~., (3.3) 

where (Sa B) is a complex unimodular matrix; it satisfies 

det(sa B) = 1 (3.4) 

The relationship between the two types of transformations is given by 
the invariance of the a~,, 

a .  ~ s * e  sB D cr~eD = ~ .~B  (3 .5)  

and we solve for a,  ~ to obtain 
~ v _  I .~120 D,.rAB . - ~-~X ~B v,  o'~o (3.6) 

The determinant of such a matrix (a~ ~) is +1 and at ° is positive, which indi- 
cates that we are restricted to proper orthochronous Lorentz transform- 
ations. Conversely, it is possible to find two unimodular matrices from 
equation (3.6) for a given proper orthochronous Lorentz transformation 
matrix (aj, v); they differ by an overall change of signs. 

We also want to consider the antilinear transformations 

q~ = Sa ~ ~o~ (3.7) 

we obtain the transformation matrix 

a / =  ½ ~ c  ~ ~, ~x~  ~ (3 .8)  o B u# ~f)C 

which corresponds to an improper orthochronous Lorentz transformation. 
Thus, it includes the parity transformation ~ on the coordinates; but 
the complex conjugation of the spinor field leads to the interchange of the 
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positive- and negative-frequency parts. Consequently, we associate this 
type of transformation with c ~  where c¢ stands for charge conjugation. 
We cannot obtain antichronous Lorentz transformations in this manner; 
in particular, multiplying the elements ofs by i does not change the resulting 
a~, ~ in equations (3.6) and (3.8).:~ 

On the other hand, all homogeneous Lorentz transformations can be 
represented by linear transformations of bispinors. Under a Lorentz 
transformation, a spinor field ¢(x) goes into 

~k'(x') = S ~ ( x )  (3.9) 

and the invariance of the ~,, gives 

(3.10) 
whence 

a. v = ¼Tr(S -1 y. S? v) (3.11) 

The matrices that correspond to the parity transformation ~ and time 
reflection ~"  are 

= _+ iro (3.12) 

Sr = + i71 r2?~ (3.13) 

and they give the correct Lorentz transformation matrices through equa- 
ti on (3.11). Neither of these transformations involves complex conjugation 
of the field; thus, the second one represents the strong time reflection that 
interchanges particles and antiparticles when t changes into - t .  In the repre- 
sentation (1.5) of the y,, they are 

.(0 10) (3.14) S p = + l  1 

S t - - +  (_~ I0) (3.15) 

and the transformations of the spinors are, choosing the plus sign, 

for a parity transformation, and 

~o' = ix (3.16) 

Z '=  i~o (3.17) 

e ' =  z (3.18) 

Z'= - cp (3.19) 

for time reflection. If we use equation (2.2), equation (3.16) becomes 

~o'A(x') = 0 ~'B q~B(x)/m (3.20) 

Aharoni (t965) relates the antichronous part of  the Lorentz group to transformations 
with matrices of  determinant - 1  ; we believe this is incorrect. 
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it is debatable to what extent this relation represents the Lorentz transform- 
ation, especially if we consider that it involves not only the field but also 
its time derivafive.~ 

Charge conjugation, c~, which leaves the coordinates invariant, is repre- 
sented by the antilinear transformation 

~9'(x) = ± i h  ~,*(x) (3.21) 

so that ~cg is represented by 

¢'(x') = ± 70 72 ~*(x) (3.22) 
whence 

(p'(x') : c%~o*(x) (3.23) 

This transformation, up to a factor i, belongs to the type (3.7). We also note 
that what is usually called time reversal, 

~'(x') = ± 7173 ~p*(x) (3.24) 

corresponds to ~ = j-,cg and implies no interchange of particles and anti- 
particles. 

I f  we restrict ourselves to the vector space of spinor fields as functions of a 
three-vector variable, we have represented proper orthochronous Lorentz 
transformations and also the product of this subgroup with ~cg. Represent- 
ation of N and f are in a sense tied to the dynamics of the field, as stated by 
equations (2.2) and (2.3). These properties of spinors make them particu- 
larly well suited to the formulation of weak interactions. 

4. Third-Order  Equat ion 

The Dirac equation (2.1) can be obtained from the Lagrangian density 

~ ( 1 )  = ½i(~7,  @,, - ~ , ,  7.  @) - m~@ (4.1) 

We eliminate Z by means of equation (2.2), and this Lagrangian density 
becomes 

A ° = -~i[(~p* a~ a ,  a e ~o.p, - ~p*, G. a ,  cr B cp.e)/m 2 

- (p* a~ (p,~ + ~o*, o-, cp] (4 .2)  

It is not equivalent to 2f(i), because we have used an equation of motion 
in the substitution; also the presence of second-order derivatives changes 
the nature of the restrictions on the variations of the fields at the boundary. 
The Euler-Lagrange equations, extended to this case (Barut & Mullen, 
1962b; Goldberg & Marx, 1967), become 

iOBA(U + m z) ~OA = 0 (4.3) 

the third-order equation considered by Kibble & Polkinghorne (1968) and 

$ Such a transformation is used by Theis (1959). He does not make any distinction 
between the spinor and bispinor equations in this context. 
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Barut & Mullen (1962a). These fields have then six basic degrees of freedom 
instead of  the four for the Dirac field, and the equations are not equivalent. 

We can separate the solutions of this equation into two parts, 

~PA = cA + r/X (4.4) 

by means of  projection operators; we set 

~A = -- ~ e A / m  2 

~A = (~2 _~ /.F/2) ~PAlm 2 

They satisfy 

(4.5) 

(4.6) 

(a + m 2) G, = o (4.7) 

ia~A/'/A = 0 (4.8) 

so that ~ corresponds to the field ~ in equation (2.5) and ~/represents a 
massless spin-l/2 field.$ 

We obtain the conserved densities from the Lagrangian density (4.2) 
via Noether's theorem.§ A guage transformation of the first kind gives the 
current density 

j~  = - ½q~* a .  ~o - ½(cp* a .  ~o ~ + ~o* cr~ ~p,~ - q~*, cr~ ~o ~)/m 2 + c.c. (4.9) 

where c.c. stands for the complex conjugate of  the expression preceding 
it. We expressj~' in terms of ~ and r/and separate it into two parts by adding 
the divergence of an antisymmetric tensor, f~.,~, where 

f ~ .  = ¼~o*(tre try, - a .  a~,) tr B qLz /m 2 + c.c. (4.10) 
We obtain 

j ,  = ~* a~ ¢ + ~.* a~a,~r /~ . t~ /m 2 - rt* a , ~  t (4.11) 

Space-time translations yield the canonical stress-energy tensor 

' " * ~o,~,,,/m 2) + ~o*, rj~ = ½t[q),. tru(cp + as q),~.lm 2 
-'* a "  f m  21 - q ) , . .  ~q),~c j + c . c , - S e g . ~  (4.12) 

to which we add a termly.  ..... where 

f ~ . ~  = ¼i [(p*~(o', o" 5 - -  tr~ tr,)  tra ~o.ll/m 2 - -  2 r / * ( g , .  tr~ - -  g .~  tr.)  4 ]  + c . c .  

(4.13) 
to obtain 

T.,  = ½i[¢* au ¢,~ + ~ , * a ~ a . a ~ ¢ , ~ / m  2 - ~l*aurl.~, ] + c.c. (4.14) 

~: The parameters 2 in Kibble & Polkinghorne (1958) and e in Barut & Mullen (1962a) 
are simply normalization parameters for this massless field, as pointed out in the first 
reference. When they are set equal to zero, the effect is to eliminate this massless field 
again. 

§ We use the expressions in Goldberg & Marx (1967), after changing the signs preceding 
aAa[aOk,~x in equation (A.18) and O~(Ak~p..~l) in equation (A.20) from minus to plus. 
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Homogeneous Lorentz transformations lead to the angular momentum 
density 

M~,vo= x v T ~ p -  xpT;,v + S'uvo (4.15) 
where 

t __ " * * 2 S~v~ =~t{q~ 5%,[a,(~o =/m + ~o) + a~ q~ , l rn  2] 

• * * * (4.16) - (&,~, q~,v - &,o q~.v - 9 . ,  5a~,p) aa q~.ol m2} + c.c. 

~at~vAB = ¼(a/z CA a f  B --  O'vCA a~ B) (4.17) 

to which we addf , , ,o . ,  where 

L ,vo  = x , f~,o - xoLuv + 2~i{~P*( °', au - a ,  a , )  (av ao - ao a,)  a a q~.a 

- 49*[a-(guy aa - guo a.) - au(&~ a o - g . .  a.)] a a 9,a 

- 29"(a,  a .  - a .  as) (a~ q~,o - a ,  (p,~) + 8q~*(g., g, o - guag~v) aa cP.a 
+ 4(p*[(g=. av - &,~ap)qL. - (g.o a.  - guy a.) c,o,=] - c,c.}/m 2 (4.18) 

to obtain 
M . ,  o = x ,  T . ,  - x o T~,v + S . ,o  (4.19) 

where 

S~,vo = ¼i[~*(o-. e% % - a o a ,  au) ~ + 4*, a~(a. a ,  a o -- a o a~ a~,) a O ~,tJm 2 

- ~l*(a, a ,  a , - a o a~ aj,) tl] (4.20) 

We note that the expressions for •, T~v and Mu~ o are all the difference 
between two terms of precisely the form found in equations (2.8), (2.10) 
and (2.13), after equation (4.8) is used to eliminate some terms for the field 
I/. 

The solutions of equations (4.7) and (4.8) can be written in the form 

f 3 m2 
~(x)=(2n) -3/2 d p 2po(p~-2lPl ) 

x [b,.(p) exp(-ip, x) + da(p) exp(ip, x)] ;~z(/~) (4.21) 

f dak  [ a ( k ) e x p ( - i k . x )  + e(k) exp ( i k . x ) ]  Z+(Fc) (4.22) ll(x) (2tO-a/2 

where the Za are the usual helical states and 

Po = (p2 + mZ),/2 (4.23) 

ko = [k] (4.24) 

We obtain Jo from equation (4.11) and integrate it over all space; this 
gives the 'charge' 

Q = f d3p(b~ b,, + d~ da) -- f d a k(a* a + c* c) (4.25) 

Similarly, the integral of To~ gives the energy-momentum vector 

P ~ = f  d a p p ~ ( b * b z - d * d ~ ) - f  d a k k v ( a * a - e * c )  (4.26) 
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The space-space components of the angular momentum tensor can be 
found and they separate into orbital and spin parts$ 

= i f d3p{pAzl b~ O(bz Zz)/ap, L~j 

Zt d* a(d~, gz,)/ap,] - (i+->j)} - i f d 3 + k{kj 

× [zt+ a* O(az+)/ak, + Zt+ c* O(cz+)/Ok,] - (i~-rj)} (4.27) 

s = ~ f d~p(zt b~ ~ b~, Z~, + Zl a~* ~ d~, Z~,) 

- ½ f d 3 k(xt+ a* a az+ + zt+ c* a eZ+ ) (4.28) 

The sign of the contributions of the different fields is determined by the 
direction of propagation in time in relativistic quantum mechanics or by 
anticommutation of creation and annihilation operators in the usual quan- 
tum theory of fields. 

If the field that is eliminated from the theory is % the Lagrangian density 
Lf in equation (4.2) has the same form, and equation (4.3) is replaced by 

iO;,B(O z + m2)x a = 0 (4.29) 

The fields { and ~/have a superindex A instead of a subindex A, and equation 
(4.8) is replaced by 

iOa~ r/a = 0 (4.30) 

Consequently, the expansion in equation (4.22) contains X- instead of 
X+, which changes the contribution to the spin in equation (4.28) accord- 
ingly. 

5. Electromagnetic Interactions 

We obtain the interaction of this spinor field with an electromagnetic 
field, given by the potential A~, through the substitution (2.6). From the 
Lagrangian density (4.2), we find 

.~=-~i{[(D*~o*)cr~a~aaD.Dpq~- * * (D. D~ ~o*) cry, a~, era D B qg]/m 2 

- q~* ~r~ D~ ~o + (D* ~o*) cr~ ~o} (5.1) 

We note that the operators D r and D~ do not commute, but 

D~,D, -  D, Du= ie F~,, (5.2) 
and consequently 

DeA De"a= 6~ D 2 + ie F~6a~v~ (5.3) 

The equation of motion is 

iO~C(Dbc D 5A + rn z 5~) goA = 0 (5.4) 

$ We recall (Marx, 1968) that these parts do not correspond to the terms in equation 
(4.19), since S~vp is not a conserved density. 
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We can still separate the solutions of equation (5.4) into two parts given by 

~c = - DBc O bA q~A/m 2 (5.5) 
t/c = (OBc h RA + m 2 •A) ~gA/m 2 (5.6) 

which obey 
(O~c O t)A + m 2 5 A) ~A = 0 (5.7) 

iD ~A r/A = 0 (5.8) 

Equation (5.3) shows that equation (5.7) can be written in the form 

[(O 2 + m 2) 5A + ie F ~  5°uva A ] ~A = 0 (5.9) 

which is essentially Feynman's equation. 
Equation (5.8) indicates that the massless field is charged, so that in this 

theory it should not be interpreted as the neutrino fietd., 
We also find that the conserved current density is 

Js - ½cp* "' = o" s q~ - ½[q~* o" s o'~ o'# D~ D# q~ 
+ 9 * a ~ D s D ~ q ) - ( D *  p*)a~D~(p]/m2 +c.c .  (5.11) 

which can be changed to 

j s = ~ * a s ~  + ( O * ~ * ) a ~ a u a a O a ¢ / m 2 - t l * a s ~ l  (5.12) 

by adding the divergence of 

As = ¼(P*(o', o" s - a u o'=) o- a D a qo/m z + c.c. (5.13) 

The current density (5.12) separates into j(, 1) and j(, 2) given by 

j~, = j ~ t )  _ j p )  (5.14) 

j~') = 4" a. ~ + (D* 4*) a= a s a a D a ~/m z (5.15) 
and both parts are conserved independently. Furthermore, j(1) can be ob- 
tained from the current density (2.7) for a Dirac field that obeys 

(-iy. D + m) • = 0 (5.16) 

The fact that the field i/interacts with the electromagnetic field in this theory 
is to be expected if we consider that the basic field 9 transforms in the usual 
way, 

(p(x) -+ ~p'(x) = 9(x)  exp [- ieA(x)  ] (5.17) 

under gauge transformations of the second kind. It is possible to have 
obey equation (5.7) and i/the free-field equation (4.8), but then the unifying 
concept of the field 9 is lost. 

:~ It is not clear whether this difficulty is removed by the separation given by Barut & 
Mullen (1962a) in their footnote on page 194. It appears to lead to an equation different 
from (5.4), and the substitution 

8,,-> D~ = Ou + ½ie(1 + rs) A,, (5.10) 

is not Lorentz covariant. 
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A more desirable interpretation of Q in equation (4.25) is that of a lepton 
charge, which has to be conserved for electromagnetic and weak interactions. 

In a dynamical problem, we can specify ~0, ~b and ~ initially (or 4, ~ and 
t/), and determine the fields at later times. In the context of relativistic 
quantum mechanics, it is appropriate to specify positive-frequency parts at 
the initial time and negative-frequency parts at the final time; this can be 
further modified by changing the Green function. The probability amplitudes 
in momentum space are given by generalizations of equations (4.21) and 
(4.22), such as 

112 

x [b~.(p, t) exp(ip-x) + 6(P, t) exp(-ip, x)] Za(fi ) (5.18) 

rm (po 2[p[)] 1/2 
Do~(X) - a.D¢(x) = i(2n) -3'z f d 3 

P~7~ [_ 2po J 

× [ -  bz(p, t) exp(ip.x) + dz(p, t) exp(-ip" x)]zz(p) 

(5.19) 

f d 3 k[a(k, t) exp(ik, x) + c(k, t) exp(-ik- x)] Z+(k) (5.20) ~(x) 

In terms of these time-dependent amplitudes, the charge Q in equation (4.25) 
has the same form. 

We also note that the parity transformation given by equations (3.9) 
and (3.14) becomes dependent on the electromagnetic field, since they 
imply that 

q~'A(X') = D AB 9B(x)/m (5.21) 

a relation that again exhibits the dynamical nature of this symmetry. 

6. Weak Interactions 

We can use fields that obey a third-order equation to discuss weak inter- 
actions if we identify the massive part with the electron or muon and the 
massless part with the corresponding neutrino. Thus, we need two of these 
fields to describe a leptonic process such as muon decay. 

The type of field that enters in such an interaction can be obtained from 
the usual four-fermion coupling. It involves currents of the form 

= + i 5) v + c.c. (6.1) 

and, since our choice of 7-matrices implies that 



THIRD-ORDER EQUATION FOR TWO-COMPONENT SPINORS 87 

the electron field enters through the part projected by the operator 

½(l + iys)= (00 ~) (6.3) 

This selects the field X x from the bispinor. The current (6.1) is then a part of 

J# = Z *A O'/O}A Z ~ (6.4) 

which in addition contains terms with two electron fields or two neutrino 
fields. The nature of the muon field depends on our choice of the assignment 
of the #+ or #-  to the role of particle. The analogy between the #-  and the 
electron is usually taken as an indication that it should be the particle, 
but we prefer to assign the #+ to this role because it allows the neutrinos 
to be part of a single bispinor field, because it suggests a single lepton num- 
ber assignment that forbids the decay of the muon into an electron plus one 
or more photons, and because the different mode of propagation could be 
involved in an explanation of the large mass ratio for the muon and electron. 

If we use capital Greek letters for the muon field, we can write the Lagrang- 
Jan density in the form 

~e = ~eo(Z) + ~eo(O) + ~e, (6.5) 

where £% is given by equation (4.2) and 

"~Pl = gz  *A tTu~A Z 1~ ~ (7~ D ~)D = gJu(z)J~(O) (6.6) 

Since this interaction term contains no derivatives of the fields, the conserved 
electron and muon currents are still given by equation (4.9). The equations 
of motion have the form 

iOt~g( 02 + m2) f f  = g m2 aoBA zBJg( ~ )  (6.7) 

and the electron and neutrino parts defined by equations (4.5) and (4.6) obey 

(0 2 + m e) 4 x = igO :*B [zeJeB(O)] (6.8) 

iota 11 a = gza  JxB(O) (6.9) 

Using these equations, we find that adding the divergence off~ u from equa- 
tion (4.10) gives a current density 

L = 4" a~ ~ + 47: a= a,~ aB 4.dm 2 - n* ~. 11 
+ 2ig{O=[Ja(O) Z*] at~ cry, % Z - Z* a~, ~ aa O=[ZJa(O)]}/m z 

+ ig [4 (# )  z* G= ~, ~ 4.p - 4.*. a .  G, ~ zs~(~)]/m 2 

+ g2J,~(O)Je(O) Z* a~, a u a a g/m 2 (6. i0) 

which includes terms dependent on the interaction. 
If  we define the neutrino current density by 

J~) = n* a~ r / -  H* ~ H, (6.11) 
we calculate 

L(2) = ig[Ju(O) (¢ ,  a,, ~1 - q* a,, 4) - Jr(Z) (E* a .  H - H* au Z)] (6.12) 
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and conclude that this current is not conserved. We are thus confronted with 
the difficulty to reconcile conservation of lepton number with conservation 
of charge for this form of the weak interactions. 

7. Relativistic Quantum Mechanics 

The interpretation of a classical field as a wave function in relativistic 
quantum mechanics is closely connected to the type of Green function used 
in the solution of a dynamical problem and the corresponding specification 
of boundary conditions. 

The Green function for this third-order equation is a second-rank 
spinor that satisfies the equation 

iOBA(O 2 + m 2) GcA(X, X') = -- 6(X -- X') 3~ (7.1) 

As in other cases, we can find the Fourier transform and invert it, that is, 
we determine 

1 ~ O',eg exp[-- ik'(x - x')] 
G ~ A ( X , X ' ) = ~  3 d4kk" ~k~----"~) (72) 

{c) 

where the path (C) specifies how we have to integrate around the poles of 
the integrand. The exact nature of the path to be selected depends on the 
identification of the positive- or negative-frequency part with the particles, 
which should be specified at the intial time. The usual choice is the causal 
Green function or Feynman propagator, 

G~(x, x') = ( 2 ~  f d* k k" a~cA exp[-ik. ( x - x ' ) ]  
~ k ~ T / ~ _ _ m ~  T/T) (7.3) 

which requires that the positive-frequency part of the wave function be 
specified at the initial time, and the negative-frequency part at the final time. 

A process such as 
#--->e- + 9e + 9~ (7.4) 

is determined by specifying the states of both antineutrinos at the final time 
and requiring that no positrons or #- be present at the final time and no 
neutrinos, electrons or/~+ be present at the initial time. A perturbation ex- 
pansion in powers ofg can be used to determine the positive-frequency parts 
of both fields ~ and 4~ at the final time and the negative-frequency parts at the 
initial time. Those parts containing p- and e- give the probability of the 
process under study and the amplitudes of the particles involved. Another 
process that would be described by the same calculation is 

#+ + ~e -~- ~ + v~ (7.5) 

which violates charge conservation; such a reaction has to be forbidden 
by dynamical considerations or additional constraints. 

As in the case of the Dirac equation, we have to change the signs of certain 
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elements of the Hamiltonian (Marx, 1970c) in order to have a conserved 
charge for the massive particles. This can also be accomplished by a quanti- 
zation of the field (Marx, 1972) that leads to a fixed number of 'particles'. 

There are no special difficulties with purely electromagnetic interactions, 
since the currents for the massive and massless particles are separately 
conserved. 

In the conventional approach to relativistic quantum mechanics (Feyn- 
man, 1949; Bjorken & Drell, 1964), problems with divergences should be 
helped by the degree of the integrand in equation (7.3), which is -3 rather 
than -1, as is the case for the usual fermion propagator. 

8. Quantization 

Much effort was spent (Kibble & Potkinghorne, t958; Barut & Mullen, 
1962a) in following a canonical quantization procedure for this field. 
This leads to difficulties such as 'improper limits', indefinite metric in the 
space of state vectors and subsidiary conditions. 

Due to the intrinsic ambiguity in the passage from (antisymmetric) 
Poisson or Dirac brackets to (symmetric) anticommutators, we do not find 
a strong reason to rely on a canonical quantization procedure for a fermion 
fietd. We prefer the straightforward approach of identifying the independent 
amplitudes in momentum space, with normalization factors determined 
by the simple form of the charge, and assuming that they obey the usual 
anticommutation relations, such as 

= d1 , (p ' ) }  = a ( p  - p ' )  (8 .  l )  

(a(k), a*(k')} = {e(k), e*(k')} = 6(k - k') (8.2) 

while the others vanish. These are operators in the SchrOdinger picture, 
and a detailed examination of possible problems with causality is needed in a 
particular theory. 

In the conventional approach to quantum field theory, we assign the 
role of creation operator to the negative-frequency part of the field; 
operators are then normal-ordered, which changes the signs of certain terms 
in the conserved quantities. The state vector obeys the SchrSdinger equation 
and we can use a retarded Green function to find the time development of 
the state. 

In our modified quantization procedure (Marx, 1972), we develop a 
theory that is closely related to relativistic quantum mechanics. We assign 
the role of annihilation operators to both the positive- and negative-fre- 
quency parts of the field; in this manner, we only have to deal with a fixed 
number of 'particles'. We assume that the Hamiltonian operator displaces 
particles forward and antiparticles backward in time. This requires the 
introduction of a many-times formalism, and also changes the signs of the 
conserved quantities in the desired way. Such a theory makes use of a causal 
Green function in the space of state vectors. There also is a certain amount 
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of flexibility that allows the interchange of the direction of propagation in 
time for some particles and their antiparticles, if this is required by the 
conservation laws. The main difficulty is presented by the consistency 
conditions in the case of interacting particles, since the equations of motion 

&p/atl = HI ~ (8.3) 

o¢lotz = t-12 ¢ (8.4) 
imply that 

[H1, H21 ~ = 0 (8.5) 

Barut & Mullen (1962a) present a detailed formulation of quantum elec- 
trodynamics for this field in such a way that the massless field is effectively 
eliminated, but they give no indication of its role in weak interactions. 

9. Concluding Remarks 

We have studied a classical two-component spinor field that obeys a 
third-order equation, starting from a Lagrangian density obtained from the 
Dirac theory for bispinors. 

The free field can be decomposed into a massive field that obeys the 
Klein-Gordon equation and a massless field that obeys the Weyl equation. 
It is thus capable of describing the electron or muon field together with the 
corresponding neutrino. The electromagnetic interactions introduced 
through the usual gauge-invariant substitution maintain this separation, 
but the massless part of the field is also affected. This difficulty could be re- 
solved by further research either to modify the interaction or to study the 
possibly peculiar properties of a massless charged field or particle (Bonnor, 
1969). 

The interaction Lagrangian density for weak interactions of leptons was 
obtained from the usual vector currents without derivatives of the fields, 
but in the present theory it includes terms with two massive fields or two 
massless fields, which introduce possible decays that violate electric charge 
conservation. Thus, a physically meaningful theory for weak and electro- 
magnetic interactions still has to be found. 

Fields that obey higher-order equations do not present any special diffi- 
culties of interpretation in relativistic quantum mechanics, but the signs 
of the contributions to conserved quantities may have to be changed by mod- 
ifications similar to those used for the Dirac equation. It is also of interest 
to examine the changes in the usual perturbation theory; the improved 
convergence due to the degree -3  of the integrand of the propagator might 
solve some of the well-known problems with divergent diagrams. 

The quantization of this field can be carried out in several different ways, 
and there seems to be no justification in spending a great deal of effort on 
canonical formulations. The approach most attractive to us relates directly 
to probability amplitudes and relativistic quantum mechanics. This avoids 
problems such as an indefinite metric in state vector space. 



THIRD-ORDER EQUATION FOR TWO-CO/VlPONENT SPINORS 91 

A fur ther  unif icat ion o f  the e lec t ron and  muon  fields into a b i sp inor  
field tha t  obeys a th i rd -o rde r  equat ion ,  briefly ment ioned  by  Kibb le  & 
Po lk inghorne  (1958), is ano the r  interest ing possibi l i ty .  Once the electro-  
magnet ic  and  weak  in teract ions  are found,  we might  find ou t  how different 
masses for  e lectrons and muons  arise s ta r t ing  f rom a single field with one 
mass  pa ramete r .  
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